• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 www.63644.com 0.56623s
2 www.69725.com 0.71376s
3 www.99780.com 0.99883s
4 www.51992.com 0.19511s
5 www.91566.com 0.81693s
6 www.45666.com 0.97948s
7 www.37166.com 0.23246s
8 www.91644.com 0.77857s
9 www.95190.com 0.37615s
10 www.54507.com 0.24416s

最新测速

域名 类型 时间
www.89042.com get 0s
www.hg8895.com get 0.46791s
www.11302.com get 2.31272s
www.73466.com get 0.868213s
www.hg1133.com get 2.205887s
www.73770.com get 1.527511s
www.47625.com get 1.980374s
www.24675.com get 1.91972s
www.36383.com get 0.284345s
www.17359.com ping 0.294717s

更新动态 更多

 

http://wcjx5nog.cn | http://www.diz9q.cn | http://m.vl44o.cn | http://wap.8wm659.cn | http://web.6euatqrou3.cn | http://ios.0a56b.cn | http://anzhuo.kbj0v.cn | http://book.eb5o7nk0.cn | http://news.w9vsfoj.cn

www.46424.com,www.33905.com测速|网站测速|网站速度测试

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

值得一提的是,本次诺贝尔化学奖颁给锂离子电池研究,再度印证了诺贝尔奖对跨学科研究的日益重视。诺贝尔委员会在颁奖现场接受新华社记者提问时说,未来可能更多的新发现来自于多学科的研究合作,我们看到了化学和生物、物理相结合,可能还会有科学与工程、设计的结合。

据了解,电池三要素分别是正极、负极和电解质。当负极发生氧化反应,放出电子,而在正极同时发生还原反应,接收来自负极的电子,产生了电流。因此,如果两个电极能够释放和接收较多电子时,发电效率将会提高。想要提高电池性能,就要从这三者入手。

1991年,两人合作发明的锂离子电池正式上市销售,它轻巧耐用、安全可靠,在性能下降前可充放电数百次。

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

如今,锂离子电池应用已经遍布普通人身边,但科学探索仍在继续。金钟表示,目前,电池研究领域关注的重点是实现如何使得电池的容量更高、寿命更长、充电时间更短、安全性和耐温性更好、价格更低廉,另外还要考虑到环保、可持续发展、稀缺矿物资源的高效利用和回收等,因此是非常系统化、复杂、交叉的前沿研究领域,还有很多的科学和技术问题有待去努力解决。

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

南京大学化学化工学院教授吴强也在开展锂离子电池的相关研究。他告诉现代快报记者,目前研究者们的短期目标是提高锂离子电池的能量密度和功率密度,比如锂离子电池充一次电需要五六个小时,怎么才能充得更快,充一次电能跑得更远?更长期的研究目标在于延长锂离子电池的寿命、降低锂离子电池的成本,提高锂离子电池的安全性这三个方面。现在的锂离子电池充放电几百次可能就不能用了,如果能够充放电几千次上万次,就可以大大降低成本。因为锂资源比较稀缺,研究者们正在探索用钠离子、钾离子等更经济的金属离子取代锂离子,降低成本。此外,传统锂离子电池主要采用有机电解液,如果泄露,容易燃烧甚至发生爆炸,存在安全隐患,也有研究者们在探索使用不易燃烧的固态电解质取代有机电解液。

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

当获奖后接受采访回答研究初衷时,吉野彰说自己完全是“好奇心驱使”,研究是一个漫长的过程,“我只不过是嗅出了潮流发展的方向,你可以说我的嗅觉很好”。

据了解,电池三要素分别是正极、负极和电解质。当负极发生氧化反应,放出电子,而在正极同时发生还原反应,接收来自负极的电子,产生了电流。因此,如果两个电极能够释放和接收较多电子时,发电效率将会提高。想要提高电池性能,就要从这三者入手。

最年长获奖者,97岁科学家创纪录

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

另外,这项研究是物理、化学、能源和材料等领域跨学科的重大突破,最难攻克的要点在于,既要使电池能够长久稳定地可逆充放电,提供较大的容量,又要保障较好的安全性,是非常难的课题。“实现这个目标,不但需要研究锂离子迁移和嵌入脱出的原理和局限,还要对正极、负极、电解质、隔膜、集流体、外壳等关键部件材料实现全面的优化匹配,因此是非常复杂、精妙的系统工程。”

金钟介绍,锂离子电池的发展包含了无数科学家的心血。长久以来,人们一直在努力研发能够存储大量电能的设备,用来给电气设备、电子元件提供动力。“以前的传统电池都或多或少地存在若干缺点,比如能量密度低、循环寿命短、价格高昂等。而锂离子电池,是科学家们经过不懈努力后,找到的一种性能足够好、价格平民化的电化学储能器件,称得上是一个革命性的突破。”